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Abstract 
 
Assessing the effects of early non-pharmaceutical interventions1-5 on COVID-19 spread 
in the United States is crucial for understanding and planning future control measures to 
combat the ongoing pandemic6-10. Here we use county-level observations of reported 
infections and deaths11, in conjunction with human mobility data12 and a metapopulation 
transmission model13,14, to quantify changes of disease transmission rates in US 
counties from March 15, 2020 to May 3, 2020. We find significant reductions of the 
basic reproductive numbers in major metropolitan areas in association with social 
distancing and other control measures. Counterfactual simulations indicate that, had 
these same control measures been implemented just 1-2 weeks earlier, a substantial 
number of cases and deaths could have been averted. Specifically, nationwide, 61.6% 
[95% CI: 54.6%-67.7%] of reported infections and 55.0% [95% CI: 46.1%-62.2%] of 
reported deaths as of May 3, 2020 could have been avoided if the same control 
measures had been implemented just one week earlier. We also examine the effects of 
delays in re-implementing social distancing following a relaxation of control measures. A 
longer response time results in a stronger rebound of infections and death. Our findings 
underscore the importance of early intervention and aggressive response in controlling 
the COVID-19 pandemic. 
 
Main text 
 
The ongoing COVID-19 pandemic has caused millions of infections and hundreds of 
thousands of deaths worldwide8,9. In the United States, the first imported case of 
COVID-19 was reported on January 20, 202010. In subsequent weeks, community 
transmission of COVID-19 was established, and the causative pathogen, SARS-CoV-2, 
quickly spread throughout the entire country9. As of May 14, 2020, over 1.4 million 
infections and 84 thousand deaths had been confirmed nationwide11, making the US the 
hardest-hit country in the world to date. 
 
In an effort to slow the spread of COVID-19, control measures enforcing social 
distancing and restricting individual contact were implemented across the US beginning 
in mid-March. In other countries, these non-pharmaceutical interventions (NPIs) have 
successfully controlled the spread of COVID-191-5; however, in the US, the 
effectiveness of these control measures has been less pronounced. It is therefore 
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important that changes in virus transmissibility within the US, due to NPIs, be quantified, 
so that the effects of earlier interventions on cases and deaths can be evaluated. 
 
In this study we adapted and applied a dynamic metapopulation model informed by 
human mobility data and representing SARS-CoV-2 transmission in 3142 US counties 
(Methods). We explicitly simulate documented and undocumented infections13, for 
which separate transmission rates, ! and "! (" < 1), respectively, are defined. Here " 
is the relative transmissibility of undocumented infections. To reflect heterogeneity in 
transmission rates across the US while avoiding a large number of model parameters, 
we defined a separate !! for counties with greater than 400 cumulative confirmed cases 
as of May 3, 2020 (n=311). The remaining 2831 counties were apportioned among 16 
additional transmission rate parameters depending on cumulative case levels and 
population density (Methods). Other parameters in the model include the ascertainment 
rate, %, which represents the fraction of infections documented as confirmed cases, the 
average latency period, ', the average duration of infection, (, and the travel 
multiplicative factor, ). 
 
Parameter estimation was performed using the ensemble adjustment Kalman filter 
(EAKF)15 in conjunction with county-level observations of both daily reported cases and 
deaths in the US from February 21, 2020 to May 3, 2020 (Methods). As the model 
parameters may not be as well constrained in counties with low case counts, in this 
study, we focus on several metropolitan areas with large populations and abundant data 
(Methods), for which parameter estimates are better informed. 
 
Daily cases and deaths in the US and the New York metropolitan area are well fit by the 
transmission model (Fig.1a-d). The inferred basic reproductive numbers, *" ≡ !([% +
(1 − %)"]13,16, for six metropolitan areas – New York, New Orleans, Los Angeles, 
Chicago, Boston and Miami – on five dates (March 15, March 29, April 12, April 26, May 
3) are shown in Table 1 (Methods). After March 15, *" in all six metropolitan areas 
decreases substantially in association with the implementation of social-distancing 
policies and practices. The estimated effective reproductive numbers, *# ≡ !([% +
(1 − %)"]2/4, for these six metropolitan areas also decrease from March 15, 2020 to 
May 3, 2020 (Fig. 1e). In four of the six metropolitan areas *# is well below 1 as of May 
3, 2020. For Chicago and Los Angeles, where daily confirmed cases and deaths are still 
increasing or stable, *# is close to 1 (Figs. S3-S4). In the New York metropolitan area 
*# dropped below 1 on April 10 and has continued decreasing since then. The 
estimated nationwide ascertainment rate declined from 0.21 on March 15, a time of 
rapid COVID-19 spread, and has been below 0.1 since March 30 (Fig. 1f). Note that this 
finding indicates that even though testing capacity increased substantially after mid-
March, daily new infections increased faster, leading to a declining ascertainment rate. 
 
The inference results indicate that the NPIs varyingly adopted in the US after March 15 
have effectively reduced rates of COVID-19 transmission in the focus metropolitan 
areas. During the initial growth of a pandemic, infections increase exponentially. As a 
consequence, early intervention and fast response are critical for limiting morbidity and 
mortality. To quantify the effects of earlier interventions on COVID-19 outcomes in the 
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US, we performed two counterfactual simulations in which the sequence of transmission 
rates and ascertainment rate inferred for March 15 – May 3, 2020, were shifted back 1 
and 2 weeks, i.e. to March 8, 2020 and March 1, 2020, respectively. Specifically, we 
integrate the transmission model from February 21 to March 8 or March 1, and then 
apply the daily posterior parameters, i.e., % and !s, as estimated beginning March 15. 
The simulations were generated until May 3, 2020. For the last 1-2 weeks without 
inferred parameters due to the shift in time window, we applied the final parameter 
estimates of May 3, 2020, the last day of inference. 
 
The counterfactual simulations indicate that had observed control measures been 
adopted one week earlier, the US would have avoided 703,975 (95% CI: 624,923-
773,388) [61.6% (54.6%-67.7%)] confirmed cases and 35,927 (30,088-40,638) [55.0% 
(46.1%-62.2%)] deaths nationwide as of May 3, 2020 (Fig. 2a-b). In the New York 
metropolitan area, the epicenter of COVID-19 in the US, 209,987 (183,607-223,199) 
[80.0% (70.0%-85.0%)] confirmed cases and 17,514 (15,293-18,878) [80.3% (70.2%-
86.6%)] deaths would have been avoided if the same sequence of interventions had 
been applied one week earlier (Fig. 2c-d). A more pronounced control effect would have 
been achieved had the sequence of control measures occurred two weeks earlier: a 
reduction of 960,937 (900,114-1,011,498) [84.0% (78.7%-88.4%)] cases and 53,990 
(49,688-57,186) [82.7% (76.1%-87.6%)] deaths in the US (Fig. 2e-f), and 246,082 
(234,645-252,281) [93.8% (89.4%-96.2%)] cases and 20,427 (19,380-21,093) [93.7% 
(88.9%-96.7%)] deaths in the New York metropolitan area (Fig. 2g-h). These dramatic 
reductions of morbidity and mortality due to more timely deployment of control 
measures highlights the critical need for aggressive, early response to the COVID-19 
pandemic. 
 
Now that COVID-19 is established as a global pandemic, rapid response remains 
essential to avoid large-scale resurgences of infections and deaths in locations with 
reopening plans. We quantify the effect of response time on the timing and magnitude 
of rebound in the US through further simulations. Specifically, we assume that control 
measures are relaxed beginning May 4, 2020 in all US counties, resulting in an 
increased hypothetical effective reproductive number of *# = 1.5 in each county. After a 
response time of 2 or 3 weeks, a reactive 25% weekly reduction of transmission rates, 
equivalent to the average transmission rate reduction prior to May 4, 2020 (Fig. S5), is 
imposed in each county and maintained until local weekly case numbers decline.  
 
For both scenarios, a decline of daily confirmed cases continues for almost two weeks 
after easing of control measures (Fig. 3a-b). This decreasing trend, caused by the NPIs 
in place prior to May 4, 2020 coupled with the lag between infection acquisition and 
case confirmation, conveys a false signal that the pandemic is well under control. 
Unfortunately, due to high remaining population susceptibility, a large resurgence of 
both cases and deaths follows, peaking in early- and mid-June, despite the resumption 
of NPI measures 2 or 3 weeks following control relaxation. A one-week further delay to 
the resumption of control measures results in an average of 214,545 additional 
confirmed cases and 23,110 deaths nationally by July 1, 2020. In addition, the highest 
daily numbers of cases and deaths rise from 35,288 (19,623-52,391) and 3,392 (1,858-
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4,885) for the two-week response delay, to 42,560 (21,834-61,405) and 4,166 (2,150-
5,814) for the three-week response delay. 
 
We note these counterfactual experiments are based on idealized hypothetical 
assumptions. In practice, initiating and implementing interventions earlier during an 
outbreak is complicated by factors such as general uncertainty, economic concerns, 
logistics and the administrative decision process. Public compliance with social 
distancing rules may also lag due to sub-optimal awareness of infection risk. We 
acknowledge that our counterfactual experiments have simplified these processes; 
however, we note that by the end of February, 2020, a number of other countries, 
including South Korea and Italy, were already aggressively responding to the virus17. 
Our findings indicate that had control measures and reductions of *# in the US been 
implemented at a similar time, just 1-2 weeks earlier, substantially fewer cases and 
deaths would have occurred to date. 
 
Our model experiments also indicate that rapid detection of increasing case numbers 
and fast re-implementation of control measures is needed to control a rebound of 
outbreaks of COVID-19. In these experiments, we assume the ability to re-implement a 
25% weekly reduction of transmission rates nationwide. Due to fatigue in the general 
public towards NPIs and a consequent reduction in compliance, this assumed reduction 
may be overly optimistic. 
 
These findings highlight the dramatic effect that early, coordinated interventions have on 
the COVID-19 pandemic. Efforts to further raise public awareness of the ongoing high 
transmissibility and explosive growth potential of COVID-19 are still needed at this 
critical time. Our results also indicate that without sufficient broader testing and contact 
tracing capacity18, the long lag between infection acquisition and case confirmation 
masks the rebound and exponential growth of COVID-19 until it is well underway19. 
 
In this study, we have quantified the sensitivity of case and death outcomes to small 
shifts in the timing of control measures. Our intention in presenting this work is to 
demonstrate the ongoing need for attentiveness and responsiveness as the pandemic 
continues. Currently, the majority of the US population in several metropolitan areas 
remains susceptible to COVID-19 (Fig. S6); this high susceptibility can readily support 
an increase of *# to values greater than 1 and an exponential growth of cases and 
deaths. Given this situation, safe loosening of NPI measures and a re-opening of the 
economy would be more safely effected in localities in which *# is well below 1, daily 
confirmed cases are low, and abundant testing and contact tracing in support of 
isolation and quarantine measures are available.  
 
Methods 
 
The metapopulation model 
 
We use a metapopulation SEIR model to simulate the transmission of COVID-19 among 
3,142 US counties. In this model, we consider two types of movement: daily work 
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commuting and random movement. Information on county-to-county work commuting is 
publicly available from the US Census Bureau12. We further assume the number of 
random visitors between two counties is proportional to the average number of 
commuters between them. As population present in each county is different during 
daytime and nighttime, we model the transmission dynamics of COVID-19 separately 
for these two time periods (see supplementary information). 
 
We formulate the transmission as a discrete Markov process during both day and night 
times. The transmission dynamics are depicted by Eqs. S1-S10 in supplementary 
information. In these equations, we define 2!$, 8!$, 9!$% , 9!$&  and 4!$ as the susceptible, 
exposed, reported infected, unreported infected and total population in the 
subpopulation commuting from county : to county ; (; ← :). We also introduce the 
following model parameters: ! is the transmission rate of reported infections; " is the 
relative transmissibility of unreported infections; ' is the average latency period (from 
infection to contagiousness); ( is the average duration of contagiousness; % is the 
fraction of documented infections; ) is a multiplicative factor adjusting random 
movement. We integrate Eqs. S1-S10 using a Poisson process to represent the 
stochasticity of the transmission process. 
 
The transmission model generates daily confirmed cases and deaths for each county. 
To map infections to deaths, we used an age-stratified infection fatality rate (IFR)20 and 
computed the IFR for each county as a weighted average using demographic 
information on age structure. To account for reporting delays, we mapped simulated 
documented infections to confirmed cases using a separate observational delay model. 
In this delay model, we account for the time interval between a person transitioning from 
latent to contagious (i.e. E à 9!%) and observational confirmation of that individual 
infection. To estimate this delay period, =', we examined line-list data from early-
confirmed cases in China21. Prior to January 23, 2020, the time-to-event distribution of 
the interval (in days) from symptom onset to confirmation is well fit by a Gamma 
distribution (> = 1.85, @ = 3.57). Consequently, we adopted a Gamma distribution to 
model =', but tested longer mean periods (>@), as symptom onset often lags the onset 
of contagiousness, using US data prior to March 13, 202022. Our analysis indicates that 
an average delay of 9 days supports better fit to the daily incidence data. As a result, we 
adopted =' = 9 days (> = 1.85, @ = 4.86) in this study. Based on the daily incidence and 
death data in the US, the national death curve has a 7-day lag compared with the 
incidence curve (Fig. S7). As a result, we used a gamma distribution with a mean of 16 
days (> = 1.85, @ = 8.65) to represent the delay between a person transitioning from 
latent to contagious and death. 
 
In order to represent variability in transmission rates through space and time, we 
introduced separate estimates for ! in the 311 US counties with cumulative cases over 
400 as of May 3, 2020. The remaining counties were classified into 16 groups (evenly 
distributed into a 4 by 4 grouping based on cumulative cases and population density), 
for which separate transmission rates were defined. In total, 327 transmission rates (!!) 
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were introduced in the transmission model. Using the next generation matrix approach, 
we derived the local basic reproductive number, *" = !([% + (1 − %)"]16. 
 
 
Data 
 
We used the 2011-2015 5-Year ACS Commuting Flows data from US census survey to 
prescribe the inter-county movement in the transmission model prior to March 15, 2020, 
before broad control measures were announced. The county-to-county commuting data 
is publicly available from the US Census Bureau12. We visualize the inter-county 
commuting in Fig. S1. After March 15, the census survey data are no longer 
representative due to changes of mobility behavior in response to control measures. 
Therefore, after March 15, 2020, we use estimates of the reduction of inter-county 
visitors to points of interest (POI) (e.g., restaurants, stores, etc.)23 to inform the decline 
of inter-county movement on a county-by-county basis. For instance, if the number of 
inter-county visitors was reduced by 30% in a county on a given day relative to baseline 
estimates on March 1, 2020, the size of subpopulations traveling to this county would be 
reduced by 30% accordingly. This real-time mobility data are available between March 
1, 2020 and May 2, 2020. For dates beyond May 2, 2020, we maintained the last known 
level of inter-county movement. We present the evolution of the inter-county mobility 
index (i.e., the remaining fraction of inter-county visitor numbers relative to the baseline) 
in the six examined metropolitan areas from March 1 to April 18 in Fig. S2. 
 
County-level daily confirmed cases and deaths were compiled by USAFACTS11. Daily  
cases and deaths in the six metropolitan areas are shown in Figs. S3-S4. At the 
national scale, we observed a 7-day lag between the reported case and death counts 
(Fig. S7). 
 
Model calibration 
 
To derive an estimate of model parameters, we calibrated the transmission model 
against county-level incidence and death data reported from February 21, 2020 through 
May 3, 2020. Specifically, we estimated model parameters using a sequential data 
assimilation technique. The metapopulation model is a high-dimensional system with 
60,232 subpopulations. We therefore applied an efficient data assimilation algorithm – 
the Ensemble Adjustment Kalman Filter (EAKF)15, which is applicable to high 
dimensional model structures, to infer model parameters. The EAKF has been 
successfully used to infer parameters for seasonal and pandemic influenza24 as well as 
other infectious diseases25-27. 
 
To improve the identifiability of this high-dimensional model, we further reduced the 
number of unknown parameters by fixing disease-related parameters (', ( and ") and 
the mobility factor ()). These parameters were estimated using the posterior 
distributions inferred from case data through March 13, 202022. Specifically, we 
randomly drew these parameters from the posterior ensemble members: ' = 3.59 (95% 
CI: 3.28-3.99), ( = 3.56 (3.21-3.83), " = 0.64 (0.56-0.70), and ) = 0.15 (0.12-0.17). 
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From February 21, 2020 through May 3, 2020, we performed EAKF inference each day 
using both case and death data to estimate the ascertainment rate % and transmission 
rates !!. The prior for the ascertainment rate was drawn from a distribution with a 
median value % = 0.080 (95% CI: 0.069-0.093), estimated in a previous study22. The 
prior transmission rates were scaled based on local population density using the 
following relation: !! =

".)×+,-!"(/0#)
2#'!34(+,-!"(/0))

× !. Here H(! is the population density in county 
;, IJK;>L(log5"(H()) is the median value of log-transformed population density among 
all counties, and ! is the transmission rate estimated before March 13, 2020 (! = 0.95, 
95% CI: 0.84-1.06)22. For ! shared by multiple counties, population density H(! is 
averaged over those counties. To account for reporting delays of confirmed cases and 
deaths, at each daily model update, we integrated the model forward for 16 days using 
the prior model state, and used incidence number 9 days ahead and death number 16 
days ahead to constrain current model variables and parameters. Given the large 
number of parameters in the model, the inference system may not be fully identifiable. 
To alleviate this issue, we imposed a ±30% limit on the daily change of parameters % 
and !!. This smoothing constraint is reasonable considering the continuity of human’s 
behavioral change. Sensitivity tests obtained similar results with ±20% and ±40% 
smoothing constraints (Figs. S8-S9). 
 
In total, we performed 40 independent inference runs. The inference results reported in 
Fig. 1 were obtained from all posterior ensemble members. Implementation details and 
system initialization are reported in the supplementary information. 
 
Metropolitan areas 
 
In this study, we focus on the transmission dynamics in metropolitan areas with dense 
populations and abundant observations. In particular, we presented parameter 
estimates for in six metropolitan areas: New York, New Orleans, Los Angeles, Chicago, 
Boston and Miami. Lists of counties in these metropolitan areas are provided in the 
supplementary information. 
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Figure 1. Model fit and parameter inference. Posterior fitting to daily cases and deaths 
in the US (a-b) and the New York metropolitan area (c-d). Red dots represent 
observations. Blue and grey lines are the median estimate and 95% CIs. The estimated 
effective reproductive number, *#, in six metropolitan areas are shown in (e). The black 
dotted line indicates *# = 1. Panel (f) shows the estimated ascertainment rate over time. 
The blue line and grey lines are the median estimates and 95% CIs. 
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Figure 2. Counterfactual simulations with control interventions beginning in early March 
– 1 and 2 weeks earlier than implemented. The daily cases and deaths in the US 
(a,b,e,f) and the New York metropolitan area (c,d,g,h) under early intervention are 
compared with the observations (red dots). The upper and lower rows present 
counterfactuals with interventions implemented on March 8 and March 1, respectively. 
The black lines and surrounding bands show the median estimate, interquartile and 
95% CIs. 
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Figure 3. Effects of response time after control measures are relaxed. We assume a 
control relaxation starting on May 4 in all US counties. After a response time of 2 or 3 
weeks, a weekly 25% reduction of the transmission rate is imposed. Daily cases and 
deaths in the US for a response time of 2 weeks (a,c) and 3 weeks (b,d) are compared. 
The black lines and bands show the median estimate, interquartile and 95% CIs. 
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 March 15 March 29 April 12 April 26 May 3 

 

New York 3.47 
(3.20, 3.85) 

2.10 
(1.87, 2.32) 

0.89 
(0.81, 1.00) 

0.69 
(0.59, 0.81) 

0.55 
(0.45, 0.66) 

New Orleans 2.67 
(2.29, 3.05) 

2.17 
(1.93, 2.44) 

0.97 
(0.81, 1.13) 

0.54 
(0.45, 0.66) 

0.36 
(0.29, 0.46) 

Los Angeles 2.93 
 (2.47, 3.55) 

1.59 
(1.34, 1.88) 

1.03 
(0.87, 1.21) 

0.94 
(0.72, 1.14) 

0.88 
(0.67, 1.08) 

Chicago 3.36 
(3.06, 3.70) 

2.32 
(2.02, 2.62) 

1.18 
(1.00, 1.34) 

1.14 
(0.91, 1.32) 

0.84 
(0.68, 1.02) 

Boston 3.31 
(2.76, 3.99) 

2.56 
(2.25, 2.85) 

1.37 
(1.19, 1.57) 

0.55 
(0.47, 0.68) 

0.26 
(0.21,0.35) 

Miami 2.59 
(2.09, 3.09) 

1.58 
(1.37, 1.81) 

0.94 
(0.81, 1.08) 

0.83 
(0.68, 0.97) 

0.63 
(0.50, 0.81) 

 
Table 1. Estimated basic reproductive numbers (*") for the New York, New Orleans, 
Los Angeles, Chicago, Boston and Miami metropolitan areas on March 15, March 29, 
April 12, April 26 and May 3. Mean estimate (95% CIs) are presented. 
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Supplementary Information 
 

Transmission model 
 
We formulate the transmission as a discrete Markov process during both day and night. 
Daytime transmission lasts for !"! days and the nighttime transmission !"" days (!"! +
!"" = 1). Here, we assume daytime transmission lasts for 8 hours and nighttime 
transmission lasts for 16 hours, i.e., !"! = 1/3 day and !"" = 2/3 day. The transmission 
dynamics are depicted by the following equations. 

Daytime transmission: 

*#$(" + !"!) = *#$(") −
-*#$(") ∑ /%#& (")%

0#'(")
!"! −

1-*#$(")∑ /#%(% (")
0#'(")

!"!

+ 2!"!
0#$ − /#$& (")
0#'(")

3 04#% ∑ *%)("))
0%'(") − ∑ /)%& ("))%*#

− 2!"!
*#$(")

0#'(") − ∑ /)#&("))
304%#
%*#

		(1) 

6#$(" + !"!) = 6#$(") +
-*#$(")∑ /%#& (")%

0#'(")
!"! +

1-*#$(") ∑ /#%(% (")
0#'(")

!"! −
6#$(")
7 !"!

+ 2!"!
0#$ − /#$& (")
0#'(")

3 04#% ∑ 6%)("))
0%'(") − ∑ /)%& ("))%*#

− 2!"!
6#$(")

0#'(") − ∑ /)#&("))
304%#
%*#

		(2) 

/#$& (" + !"!) = /#$& (") + 8
6#$(")
7 !"! −

/#$& (")
9 !"!		(3) 

/#$((" + !"!) = /#$((") + (1 − 8)
6#$(")
7 !"! −

/#$((")
9 !"!

+ 2!"!
0#$ − /#$& (")
0#'(")

3 04#% ∑ /%)( ("))
0%'(") − ∑ /)%&) (")%*#

− 2!"!
/#$((")

0#'(") − ∑ /)#&("))
304%#
%*#

	(4) 

0#'(") = 0## +3/%#& (")
%*#

+3(0#% − /#%& (")
%*#

)		(5) 

Nighttime transmission: 

*#$(" + 1) = *#$(" + !"!) −
-*#$(" + !"!) ∑ /%$& (" + !"!)%

0$+
!""

− 1-*#$(" + !"!)∑ /%$( (" + !"!)%
0$+

!"" + 2!""
0#$
0$+

3 04$% ∑ *)%(" + !"!))
0%+ − ∑ /)%& (" + !"!))%*$

− 2!""
*#$(" + !"!)

0$+ − ∑ /%$& (" + !"!)%
304%$
%*$

		(6) 
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6#$(" + 1) = 6#$(" + !"!) +
-*#$(" + !"!) ∑ /%$& (" + !"!)%

0$+
!""

+ 1-*#$(" + !"!)∑ /%$( (" + !"!)%
0$+

!"" −
6#$(" + !"!)

7 !""

+ 2!""
0#$
0$+

3 04$% ∑ 6)%(" + !"!))
0%+ −∑ /)%& (" + !"!))%*$

− 2!""
6#$(" + !"!)

0$+ − ∑ /%$& (" + !"!)%
304%$
%*$

				(7) 

/#$& (" + 1) = /#$& (" + !"!) + 8
6#$(" + !"!)

7 !"" −
/#$& (" + !"!)

9 !""		(8) 

/#$((" + 1) = /#$((" + !"!) + (1 − 8)
6#$(" + !"!)

7 !"" −
/#$((" + !"!)

9 !""

+ 2!""
0#$
0$+

3 04$% ∑ /)%( (" + !"!))
0%+ − ∑ /)%& (" + !"!))%*$

− 2!""
/#$((" + !"!)

0$+ − ∑ /%$&% (" + !"!)
304%$
%*$

			(9) 

0#+ =30%#
%

		(10) 

Here, *#$, 6#$, /#$& , /#$(  and 0#$ are the susceptible, exposed, reported infected, unreported 
infected and total populations in the subpopulation commuting from county A to county B 
(B ← A); - is the transmission rate of reported infections; 1 is the relative transmissibility 
of unreported infections; 7 is the average latency period (from infection to 
contagiousness); 9 is the average duration of contagiousness; 8 is the fraction of 
documented infections; 2 is a multiplicative factor adjusting random movement; 04#$ =
(0#$ + 0$#)/2 is the average number of commuters between counties B and A; and 0#' 
and 0#+ are the daytime and nighttime populations of county B. 
 
The Ensemble Adjustment Kalman Filter 
 
Originally developed for use in weather prediction, the ensemble adjustment Kalman 
filter (EAKF) assumes a Gaussian distribution of both the prior and likelihood and 
adjusts the prior distribution to a posterior using Bayes’ rule deterministically. To 
represent the state-space distribution, the EAKF maintains an ensemble of system state 
vectors acting as samples from the distribution. In particular, the EAKF assumes that 
both the prior distribution and likelihood are Gaussian, and thus can be fully 
characterized by their first two moments (mean and variance). The update scheme for 
ensemble members is computed using Bayes’ rule (posterior ∝ prior × likelihood) via 
the convolution of the two Gaussian distributions. For observed state variables, the 
posterior of the Bth ensemble member is updated through 

F,,./0,# = G,,/10"

G,,/10" + G,,.&#/&" F̅,,.&#/& +
G,,.&#/&"

G,,/10" + G,,.&#/&" I, +J
G,,/10"

G,,/10" + G,,.&#/&" KF,,.&#/&# − F̅,,.&#/&L. 

Here F,,./0,#  and F,,.&#/&#  are the posterior and prior of the observed variable (i.e., daily 
confirmed case or death in each county) for the Bth ensemble member at time "; F̅,,.&#/& 
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is the mean of the prior observed variable; G,,/10"  and G,,.&#/&"  are the variances of the 
observation and the prior observed variable; and I, is the observation at time ". 
Unobserved variables and parameters are updated through their covariability with the 
observed variable, which can be computed directly from the ensemble. In particular, the 
Bth ensemble member of unobserved variable or parameter N# is updated by 

N,,./0,# = N,,.&#/&# +
G OPN,,.&#/&Q2, PF,,.&#/&Q2S

G,,.&#/&" KF,,./0,# − F,,.&#/&# L. 

Here N,,./0,#  and N,,.&#/&#  are the posterior and prior of the unobserved variable or 

parameter for the Bth ensemble member at time "; and G OPN,,.&#/&Q2, PF,,.&#/&Q2S is the 

covariance between the prior of the unobserved variable or parameter PN,,.&#/&Q2 and 
the prior of the observed variable PF,,.&#/&Q2 at time ". In the EAKF, variables and 
parameters are updated deterministically such that the higher moments of the prior 
distribution are preserved in the posterior. 
 
To account for the reporting delay of confirmed case and death, we modified the original 
EAKF implementation by adjusting model states using observations in the near future, 
when the effects of parameter change are manifested in observations. Specifically, for 
data assimilation at day ", we ran the transmission model forward to day " + 16 using 
prior model state, and used the confirmed case at day " + 9 and death at day " + 16 to 
update model variables and parameters at day ". This look-ahead data assimilation 
considered an average delay of 9 days for infection confirmation and an average delay 
of 16 days for death reporting. 
 
In the EAKF, we assume a heuristic form of observation error variance (OEV) G,,/10" . For 
confirmed cases, we used G,,3405" = max	(25, I(WXYZ),"/9), where I(WXYZ), is the number 
of new confirmed cases on day "; for death, we used G,,654,7" = max	(1, I(!ZX"ℎ),"/9), 
where I(!ZX"ℎ), is the number of deaths observed on day ". Similar forms of OEV have 
been successfully used for inference and forecasting for a range of infectious diseases. 
In this study, this OEV setting yields satisfactory fitting. 
 
System initialization 
 
The prior ranges of model parameters 8 and - were set as 8 ∈ [0.03, 0.25] and - ∈
[0.01,2.5]. To initialize the model, we seeded exposed individuals (6) and unreported 
infections (/() in counties with at least one confirmed case before March 14, 2020. 
Unlike the situation in China, where the outbreak originated from a single city, 
importation to multiple locations in the US probably initiated community transmission. To 
reflect this potential ongoing community transmission before the reporting of the first 
local infection, for each county with confirmed cases before March 14, we randomly 
drew 6 and /( from uniform distributions [0, 18_] and [0, 20_] 9 days prior to the 
reporting date ( 8̀) of the first case. Here _ is the total number of reported cases 
between day 8̀ and 8̀ + 4.  
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The rationale for this seeding strategy is as follows. If an average reporting delay of 9 
days is assumed, we can estimate /& on day 8̀ − 9 as 9: × 9, where 9: is the average 
number of daily cases during the first five days with reported cases ( 8̀ to 8̀ + 4). If we 
use the upper bound of 5 days for D, /& is estimated as _, which is also an upper 
bound. We assume the mean /( on day 8̀ − 9 is 9_, implying a reporting rate of 
1/10=10%. Drawing /( from [0, 18_] leads to a broader prior range of the reporting rate. 
As both /& and /( were evolved from the exposed population 6, we draw 6 from the 
range [0, 20_]. This crude calculation provides a seeding range for US counties. During 
inference, this seeding can be adjusted up or down by the filter. The posterior model 
fittings capture observed outcomes well. 

 
Counties in six metropolitan areas 
 
We examined counties in six metropolitan areas with cumulative cases over 400 as of 
May 3, 2020. These counties are: 
 

1. New York: Kings County NY, Queens County NY, New York County NY, Bronx 
County NY, Richmond County NY, Westchester County NY, Bergen County NJ, 
Hudson County NJ, Passaic County NJ, Putnam County NY, Rockland County 
NY 

2. New Orleans: Jefferson Parish LA, Orleans Parish LA, St. John the Baptist 
Parish LA, St. Tammany Parish LA 

3. Los Angeles: Los Angeles County CA, Orange County CA 
4. Chicago: Cook County IL, DuPage County IL, Kane County IL, McHenry County 

IL, Will County IL 
5. Boston: Norfolk County MA, Plymouth County MA, Suffolk County MA 
6. Miami: Miami-Dade County FL, Broward County FL, Palm Beach County FL 
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Figure S1. Visualization of inter-county commuting data from the US census survey. 
Line thickness represents the intensity of human movement. 
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Figure S2. Daily change of inter-county human movement in six metropolitan areas. 
The inter-county mobility index (MI) is defined as the fraction of inter-county visitors 
relative to the baseline on March 1, 2020.  
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Figure S3. Daily confirmed cases in six metropolitan areas as of May 3, 2020. 
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Figure S4. Daily reported deaths in six metropolitan areas as of May 3, 2020. 
 
 
  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 20, 2020. .https://doi.org/10.1101/2020.05.15.20103655doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.15.20103655
http://creativecommons.org/licenses/by-nc/4.0/


 
Figure S5. The reduction of transmission rates in counties with increasing confirmed 
cases. We selected segments of increasing cases for counties with a maximum daily 
case level above 200 (right panel), and inspected the estimated transmission rates in 
those counties during the same period (left panel). The average weekly reduction of the 
transmission rate in those counties in response to increasing confirmed cases is 25%. 
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Figure S6. The estimated susceptible fraction of population in six metropolitan areas. 
Blue line is the median estimate and grey dotted lines are 95% CIs. 
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Figure S7. National daily confirmed cases and deaths. The dotted red line is the death 
time series shifted 7 days backwards. A 7-day delay between the curves of confirmed 
cases and deaths is observed. 
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Figure S8. Model fit and parameter inference for a ±20% smoothing constraint. 
Posterior fitting to daily cases and deaths in the US (a-b) and the New York 
metropolitan area (c-d). Red dots represent observations. Blue and grey lines are the 
median estimate and 95% CIs. The estimated effective reproductive number, c5, in six 
metropolitan areas are shown in (e). The black dotted line indicates c5 = 1. Panel (f) 
shows the estimated ascertainment rate over time. The blue line and grey lines are the 
median estimates and 95% CIs. 
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Figure S9. Model fit and parameter inference for a ±40% smoothing constraint. 
Posterior fitting to daily cases and deaths in the US (a-b) and the New York 
metropolitan area (c-d). Red dots represent observations. Blue and grey lines are the 
median estimate and 95% CIs. The estimated effective reproductive number, c5, in six 
metropolitan areas are shown in (e). The black dotted line indicates c5 = 1. Panel (f) 
shows the estimated ascertainment rate over time. The blue line and grey lines are the 
median estimates and 95% CIs. 
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